24 research outputs found

    Hearing the clusters in a graph: A distributed algorithm

    Full text link
    We propose a novel distributed algorithm to cluster graphs. The algorithm recovers the solution obtained from spectral clustering without the need for expensive eigenvalue/vector computations. We prove that, by propagating waves through the graph, a local fast Fourier transform yields the local component of every eigenvector of the Laplacian matrix, thus providing clustering information. For large graphs, the proposed algorithm is orders of magnitude faster than random walk based approaches. We prove the equivalence of the proposed algorithm to spectral clustering and derive convergence rates. We demonstrate the benefit of using this decentralized clustering algorithm for community detection in social graphs, accelerating distributed estimation in sensor networks and efficient computation of distributed multi-agent search strategies

    A Spectral Assignment Approach for the Graph Isomorphism Problem

    Full text link
    In this paper, we propose algorithms for the graph isomorphism (GI) problem that are based on the eigendecompositions of the adjacency matrices. The eigenvalues of isomorphic graphs are identical. However, two graphs GA G_A and GB G_B can be isospectral but non-isomorphic. We first construct a graph isomorphism testing algorithm for friendly graphs and then extend it to unambiguous graphs. We show that isomorphisms can be detected by solving a linear assignment problem. If the graphs possess repeated eigenvalues, which typically correspond to graph symmetries, finding isomorphisms is much harder. By repeatedly perturbing the adjacency matrices and by using properties of eigenpolytopes, it is possible to break symmetries of the graphs and iteratively assign vertices of GA G_A to vertices of GB G_B , provided that an admissible assignment exists. This heuristic approach can be used to construct a permutation which transforms GA G_A into GB G_B if the graphs are isomorphic. The methods will be illustrated with several guiding examples

    Efficient Quantum Algorithms for Nonlinear Stochastic Dynamical Systems

    Full text link
    In this paper, we propose efficient quantum algorithms for solving nonlinear stochastic differential equations (SDE) via the associated Fokker-Planck equation (FPE). We discretize the FPE in space and time using two well-known numerical schemes, namely Chang-Cooper and implicit finite difference. We then compute the solution of the resulting system of linear equations using the quantum linear systems algorithm. We present detailed error and complexity analyses for both these schemes and demonstrate that our proposed algorithms, under certain conditions, provably compute the solution to the FPE within prescribed ϵ\epsilon error bounds with polynomial dependence on state dimension dd. Classical numerical methods scale exponentially with dimension, thus, our approach, under the aforementioned conditions, provides an \emph{exponential speed-up} over traditional approaches.Comment: IEEE International Conference on Quantum Computing and Engineering (QCE23

    A Koopman framework for rare event simulation in stochastic differential equations

    Full text link
    We exploit the relationship between the stochastic Koopman operator and the Kolmogorov backward equation to construct importance sampling schemes for stochastic differential equations. Specifically, we propose using eigenfunctions of the stochastic Koopman operator to approximate the Doob transform for an observable of interest (e.g., associated with a rare event) which in turn yields an approximation of the corresponding zero-variance importance sampling estimator. Our approach is broadly applicable and systematic, treating non-normal systems, non-gradient systems, and systems with oscillatory dynamics or rank-deficient noise in a common framework. In nonlinear settings where the stochastic Koopman eigenfunctions cannot be derived analytically, we use dynamic mode decomposition (DMD) methods to compute them numerically, but the framework is agnostic to the particular numerical method employed. Numerical experiments demonstrate that even coarse approximations of a few eigenfunctions, where the latter are built from non-rare trajectories, can produce effective importance sampling schemes for rare events

    math-PVS: A Large Language Model Framework to Map Scientific Publications to PVS Theories

    Full text link
    As artificial intelligence (AI) gains greater adoption in a wide variety of applications, it has immense potential to contribute to mathematical discovery, by guiding conjecture generation, constructing counterexamples, assisting in formalizing mathematics, and discovering connections between different mathematical areas, to name a few. While prior work has leveraged computers for exhaustive mathematical proof search, recent efforts based on large language models (LLMs) aspire to position computing platforms as co-contributors in the mathematical research process. Despite their current limitations in logic and mathematical tasks, there is growing interest in melding theorem proving systems with foundation models. This work investigates the applicability of LLMs in formalizing advanced mathematical concepts and proposes a framework that can critically review and check mathematical reasoning in research papers. Given the noted reasoning shortcomings of LLMs, our approach synergizes the capabilities of proof assistants, specifically PVS, with LLMs, enabling a bridge between textual descriptions in academic papers and formal specifications in PVS. By harnessing the PVS environment, coupled with data ingestion and conversion mechanisms, we envision an automated process, called \emph{math-PVS}, to extract and formalize mathematical theorems from research papers, offering an innovative tool for academic review and discovery

    Spectral Complexity of Directed Graphs and Application to Structural Decomposition

    Full text link
    We introduce a new measure of complexity (called spectral complexity) for directed graphs. We start with splitting of the directed graph into its recurrent and non-recurrent parts. We define the spectral complexity metric in terms of the spectrum of the recurrence matrix (associated with the reccurent part of the graph) and the Wasserstein distance. We show that the total complexity of the graph can then be defined in terms of the spectral complexity, complexities of individual components and edge weights. The essential property of the spectral complexity metric is that it accounts for directed cycles in the graph. In engineered and software systems, such cycles give rise to sub-system interdependencies and increase risk for unintended consequences through positive feedback loops, instabilities, and infinite execution loops in software. In addition, we present a structural decomposition technique that identifies such cycles using a spectral technique. We show that this decomposition complements the well-known spectral decomposition analysis based on the Fiedler vector. We provide several examples of computation of spectral and total complexities, including the demonstration that the complexity increases monotonically with the average degree of a random graph. We also provide an example of spectral complexity computation for the architecture of a realistic fixed wing aircraft system.Comment: We added new theoretical results in Section 2 and introduced a new section 2.2 devoted to intuitive and physical explanations of the concepts from the pape
    corecore